Processes for problem solving in mathematics

1. 問題理解

- ・問題場面を理解する
- ・問題を把握し、解決するために必要なことをとらえる
- ・含まれている概念を認識し、必要であれば定義をする
- 与えられた情報やデータを、その限界ととともに理解する

2. 解決へのアプローチの立案

- ・創造的で、未知の新しい考え方を必要とするかもしれないが、試行錯誤 scatter gun approach ではない、問題の解決へのアプローチを考える
- ・アプローチにおける論理や一連の流れに関する明確な考えをもつ
- ・単純化や仮定, 見積もりの必要性を理解する
- アプローチや仮定の合理性を明らかにする
- ・数学やデータ分析がどのように役立つかを理解する
- ・ 必要な情報, 必要でないことや無視しているものを特定する

3. アプローチの実行

- ・変数間の関係を示し、数学的な方法でそのアプローチを表現する
- ・推論の数学的な側面を特定する
- ・必要な数学の内容やそれを使うための「きまり」を理解する
- ・役立つ形式で情報やデータを表わす(例えば,統計量やグラフ,代数表現、幾何的 表現や幾何的関係,図)
- ・数学のツール, 事実, きまり, 関数, アルゴリズム, 方程式や, 分析のための他の内容*を使い, そのアプローチを「合計する」ように実行する
- ・得られた解決の合理性をチェックし、必要であれば繰り返す

4. 解決の交流

- ・(数学的な)解を問題の文脈へ戻して、明確に伝え合ったり正当化したりする
- ・問題の文脈における妥当性や現実性、解決の常識性に関して解釈したり振り返ったりする
- 一般化したり、反例を考えたりする
- ・そのアプローチや使った仮定の限界についてコメントし、それらがどのように改善できるかを振り返る

*Other content includes (*pace* PISA): co-ordinate systems, measurement, numbers and units, arithmetic operations, percents, ratios and proportions, estimation, data collection, data variability, sampling, chance and probability

[Reminder to Q: For each Bowland task, identify its central 'cognitive challenge', taken from the above, not least to help kids realise it's not all about sums!]

Teachers might look at the extent to which students:

1. Understand the problem

- Understand the context in which the problem is set
- Make sense of the problem and understand what it is that needs to be solved
- Recognise the concepts involved, creating definitions if needed
- Understand the information/data given and its limitations

2. Formulate an approach to the solution

- Develop an approach to solving the problem, which may need creative and novel thinking - but not a scatter gun approach
- Have a clear idea of the logic and sequence of steps in the approach
- Understand the need for any simplifications, assumptions or estimates
- Provide a sound justification for the approach and for any assumptions
- Understand how maths and/or data analysis could help
- Identify the information needed, as well as what is not needed and what is missing

3. Implement the approach

- Express the approach in a mathematical way, showing relationships between variables
- Identify the mathematical aspects of the reasoning
- Understand the maths content needed and the 'rules' for its use
- Represent relevant information/data in a useful form (eg. graphical and statistical data, algebraic expressions, geometric representations and relations, diagrams)
- Use maths tools, facts, rules, functions, algorithms, equations, and other 'content*' for analysis and to implement the approach 'to do the sums'
- Check the reasonableness of the solution reached and reiterate if necessary

4. Communicate the solution(s)

- Put the (mathematical) solution back into the context of the problem, communicate and justify the solution(s) clearly
- Interpret and reflect on the validity, reality and common sense of the solution(s) in the context of the problem
- Make generalisations and/or develop counter-examples
- Comment on the limitations of the approach and of the assumptions used;
 reflect on how they could be improved